翻页   夜间
快眼小说 > 猛鬼机甲 > 天王星

    天才一秒记住本站地址:[快眼小说] https://www.kyxs.org/最快更新!无广告!

    A,最快更新猛鬼机甲!

    天王星(英文:Uranus)是从太阳向外的第七颗行星,在太阳系的体积是第三大(比海王星大),质量排名第四(比海王星轻)。他的名称来自古希腊神话中的天空之神尤拉纳斯(Ο8016;ραν972;962;),是克洛诺斯(农神)的父亲,宙斯(朱比特)的祖父。天王星是第一颗在现代发现的行星,虽然他的光度与五颗传统行星一样,亮度是肉眼可见的,但由于较为黯淡而未被古代的观测者发现。威廉8226;赫歇耳爵士在1781年3月13rì宣布他的发现,在太阳系的现代史上首度扩展了已知的界限。这也是第一颗使用望远镜发现的行星。

    代表天王星的希腊天神尤拉纳斯

    天王星和海王星的内部和大气构成不同于更巨大的气体巨星,木星和土星。同样的,天文学家设立了不同的冰巨星分类来安置她们。天王星大气的主要成分是氢和氦,还包含较高比例的由水、氨、甲烷结成的“冰”,与可以察觉到的碳氢化合物。他是太阳系内温度最低的行星,最低的温度只有49K,还有复合体组成的云层结构,水在最低的云层内,而甲烷组成最高处的云层。

    如同其他的大行星,天王星也有环系统、磁层和许多卫星。天王星的系统在行星中非常独特,因为它的自转轴斜向一边,几乎就躺在公转太阳的轨道平面上,因而南极和北极也躺在其他行星的赤道位置上。从地球看,天王星的环像是环绕着标靶的圆环,它的卫星则像环绕着钟的指针。在1986年,来自旅行者2号的影像显示天王星实际上是一颗平凡的行星,在可见光的影像中没有像在其他巨大行星所拥有的云彩或风暴。然而,近年内,随着天王星接近昼夜平分点,地球上的观测者看见了天王星有着季节的变化和渐增的天气活动。天王星的风速可以达到每秒250米。

    [编辑本段]

    基本资料

    旅行者2号拍摄的天王星

    发现

    发现者:威廉8226;赫歇耳

    发现rì期:1781年3月13rì

    轨道资料(历元J2000)

    远rì点距离

    近rì点距离

    轨道半长轴

    轨道离心率

    轨道周期年)

    会合周期

    平均公转速度s

    平均近点角

    轨道倾角对太阳的赤道)

    升交点赤经

    近rì点辐角

    卫星:27

    物理特征

    赤道半径地球)

    两极半径地球)

    扁率

    表面积;(15.91个地球表面积)

    体积;个地球体积

    质量公斤个地球)

    GM=5,793,939±13公里sup3;/秒sup2;

    平均密度;

    赤道表面重力加速度;

    逃逸速度s

    恒星自转周期:8722;地球rì(17时14分24秒)

    赤道旋转速率

    轴倾斜

    北极赤经

    赤纬:8722;

    反照率

    表面温度:

    最小平均最大

    49K53K57K

    星等:5.9~5.32

    角度尺寸:3.3"—4.1"[3]

    形容用词:Uranian

    大气

    大气组成:

    83±3%氢分子(H2)

    15±3%氦

    2.3%甲烷

    重氢化合物(HD)

    冰:

    氨

    水

    氨硫化氢(NH4SH)

    甲烷(CH4)

    [编辑本段]

    发现

    天王星在被发现是行星之前,已经被观测了很多次,但都把它当作恒星看待。最早的纪录可以追溯至1690年,约翰8226;佛兰斯蒂德在星表中将他编为金牛座34,并且至少观测了6次。法国天文学家PierreLemonnier在1750至1769年也至少观测了12次,包括一次连续四夜的观测。

    威廉8226;赫歇尔在1781年3月13rì于他位于索美塞特巴恩镇新国王街19号自宅的庭院中观察到这颗行星(现在是赫协尔天文博物馆),但在1781年4月26rì最早的报告中他称之为彗星。赫协尔用他自己设计的望远镜"对这颗恒星做了一系列视差的观察"。

    他在他的学报上的纪录著:"在与金牛座ζ成90°的位置……有一个星云样的星或者是一颗彗星"。在3月17rì,他注记着:"我找到一颗彗星或星云状的星,并且由他的位置变化发现是一颗彗星"。当他将发现提交给皇家学会时,虽然含蓄的认为比较像行星,但仍然声称是发现了彗星:

    威廉8226;赫歇尔,天王星的发现者

    powers,aspsare;thereforeInowputthepowersat460and932,andfoundthatthediaetincreasedinproportiontothepower,asitoughttobe,onthesuppositionofitsnotbeingafixedstar,whilethediapareditwerenotincreasedibeingmagnifiedmuchbeyondwhatitslightwouldadmitof,earedhazyandill-defihthesegreatpowers,whilethestarspreservedthat

    赫歇尔因为他的发现被通知成为皇家天文学家,并且语无伦次的在4月23rì回复说:"我不知该如何称呼她,他在接近圆形的轨道上移动很像一颗行星,而彗星是在很扁的椭圆轨道上移动。我也没有看见彗发或彗尾。"

    当赫歇尔继续谨慎的以彗星描述他的新对象,其他的天文学家已经开始做不同的怀疑。苏联天文学家AndersJohanLexell估计他至太阳的距离是地球至太阳的18倍,而没有彗星曾在近rì点四倍于地球至太阳距离之外被观测到。柏林天文学家约翰8226;波得描述赫歇尔的发现像是"在土星轨道之外的圆形轨道上移动的恒星,可以被视为迄今仍未知的像行星的天体"。波得断定这个以圆轨道运行的天体比彗星更像是一颗行星。

    这个天体很快便被接受是一颗行星。在1783年,法国科学家拉普拉斯证实赫歇尔发现的是一颗行星。赫歇尔本人也向皇家天文学会的主席约翰8226;班克斯承认这个事实:"经由欧洲最杰出的天文学家观察,显示这颗新的星星,我很荣誉的在1781年3月指认出的,是太阳系内主要的行星之一。"为此,威廉8226;赫歇尔被英国皇家学会授予柯普莱勋章。乔治三世依据他的成就,并在他移居至温莎王室,让皇室的家族有机会使用他的望远镜观星的前提下,给予赫歇尔每年200英镑的年薪。

    [编辑本段]

    命名

    马斯基林曾这样的问赫歇尔:"做为天文学世界的恩宠"(原文如此)"为您的行星取个名字,这也完全是为了您所爱的,并且也是我们迫切期望您为您的发现所做的。"回应马基斯林的请求,赫歇尔决定命名为"乔治之星(GeiumSidus)"或"乔治三世"以纪念他的新赞助人,乔治三世。他在给约瑟夫8226;贝克的信件中解释道:

    “InthefabulousagesofaitionsofMercury,Venus,Mars,JupiterandSaturureageitshouldbeasked,whenthisst-fouwasdiscovered?Itwouldbeaverysatisfactoryaosay,‘InthereignofKihird.‘”

    天文学家Jérocirde建议将这颗行星称为赫歇尔以尊崇她的发现者。但是,波得赞成用希腊神话的优拉纳斯,译成拉丁文的意思是天空之神,中文则称为天王星。波得的论点是农神(土星)是宙斯(木星)的父亲,新的行星则应该取名为农神的父亲。天王星的名称最早是在赫歇尔过世一年之后的1823年才出现在官方文件中。乔治三世或"乔治之星"的名称在之后仍经常被使用(只在英国使用),直到1850年,HM航海历才换用天王星的名称。

    天王星的名称是行星中唯一取自希腊神话而非罗马神话的,天王星的形容词(Uranian)被铀的发现者proth用来命名在1789年新发现的元素s的重音在第一个音节,因为倒数第二个音a是短音(ūr259;n365;s)并且是开放的音节。这样的音节在拉丁文中从未被强调过,因此在传统上名字的正确发音是来自英语的[712;j650;.r601;.n601;s]。传统上不正确的发音,[j650;712;633;e618;.n601;s],重音落在第二音节并且将a发成长音是很普通的。天王星的天文学符号是AstronomicalsymbolforUranus,他是火星和太阳符号的综合,因为天王星是希腊神话的天空之神,被认为是由太阳和火星联合的力量所控制的。他在占星学上的符号,是Lande在1784年建议的。在给赫歇尔的一封信中,Lande描述他是"您的名字首次战胜地球的符号"("aglobesurhefirstletterofyourname").在东亚,也都翻译成天王星(skykingstar)。

    [编辑本段]

    轨道和自转

    哈勃太空望远镜的天王星影像

    天王星每84个地球年环绕太阳公转一周,与太阳的平均距离大约30亿公里,阳光的强度只有地球的他的轨道元素在1783年首度被拉普拉斯计算出来,但随着时间,预测和观测的位置开始出现误差。在1841年约翰8226;柯西8226;亚当斯首先提出误差也许可以归结于一颗尚未被看见的行星的拉扯。在1845年,勒维耶开始dúlì的进行天王星轨道的研究,在1846年9月23rì迦雷在勒维耶预测位置的附近发现了一颗新行星,稍后被命名为海王星。

    天王星内部的自转周期是17小时又14分,但是,和所有巨大的行星一样,他上部的大气层朝自转的方向可以体验到非常强的风。实际上,在有些纬度,像是从赤道到南极的2/3路径上,可以看见移动得非常迅速的大气,只要14个小时就能完整的自转一周。

    转轴倾斜

    天王星的自转轴可以说是躺在轨道平面上的,倾斜的角度高达98°,这使他的季节变化完全不同于其他的行星。其它行星的自转轴相对于太阳系的轨道平面都是朝上的,天王星的转动则像倾倒而被辗压过去的球。当天王星在至rì附近时,一个极点会持续的指向太阳,另一个极点则背向太阳。只有在赤道附近狭窄的区域内可以体会到迅速的rì夜交替,但太阳的位置非常的低,有如在地球的极区。运行到轨道的另一侧时,换成轴的另一极指向太阳;每一个极都会有被太阳持续的照shè42年的极昼,而在另外42年则处于极夜。在接近昼夜平分点时,太阳正对着天王星的赤道,天王星的rì夜交替会和其他的行星相似,在2007年12月7rì,天王星将经过rì夜平分点。

    天王星上的节气:

    北半球年南半球

    冬至1902,1986夏至

    分1923,2007秋分

    夏至1944,2028冬至

    秋分1965,2049分

    这种轴的指向带来的一个结果是,在一年之中,天王星的极区得到来自于太阳的能量多于赤道,不过,天王星的赤道依然比极区热。导致这种结果的机制仍然未知;天王星异常的转轴倾斜原因也不知道,但是通常的猜想是在太阳系形成的时候,一颗地球大小的原行星撞击到天王星,造成的指向的歪斜。在1986年,旅行者2号飞掠时,天王星的南极几乎正对着太阳。标记这个极是南极是基于国际天文联合会的定义:行星或卫星的北23个天王星半径之处有弓形震波,磁层顶在18个天王星半径处,充分发展完整的磁尾和辐shè带。综上所论,天王星的磁层结构不同于木星的,而比较像土星的。天王星的磁尾在天王星的后方延伸至太空中远达数百万公里,并且因为行星的自转被扭曲而斜向一侧,像是拔瓶塞的长螺旋杆。

    天王星的磁层包含带电粒子:质子和电子,还有少量的H2+离子,未曾侦测到重离子。许多的这些微粒可能来自大气层热的晕内。离子和电子的能量分别可以高达4和1.2百万电子伏特。在磁层内侧的低能量(低于100电子伏特)离子的密度大约是2厘米-3。微粒的分布受到天王星卫星强烈的影响,在卫星经过之后,磁层内会留下值得注意的空隙。微粒流量的强度在100,000年的天文学时间尺度下,足以造成卫星表面变暗或是太空风暴。这或许就是造成卫星表面和环均匀一致暗淡的原因。在天王星的两个磁极附近,有相对算是高度发达的极光,在磁极的附近形成明亮的弧。但是,不同于木星的是,天王星的极光对增温层的能量平衡似乎是无足轻重的。

    [编辑本段]

    气候

    与其他的气体巨星,甚至是与相似的海王星比较,天王星的大气层是非常平静的。当旅行者2号在1986年飞掠过天王星时,总共观察到了10个横跨过整个行星的云带特征。有人提出解释认为这种特征是天王星的内热低于其他巨大行星的结果。在天王星记录到的最低温度是49K,比海王星还要冷,使天王星成为太阳系温度最低的行星。

    带状结构、风和云

    在1986年,旅行者2号发现可见的天王星南半球可以被细分成两个区域:明亮的极区和暗淡的赤道带状区。两这区的分界大约在纬度8722;45°的附近。一条跨越在8722;45°至8722;50°之间的狭窄带状物是在行星表面上能够看见的最亮的大特征,被称为南半球的"衣领"。极冠和衣领被认为是甲烷云密集的区域,位置在大气压力帕的高度。很不幸的是,旅行者2号抵达时正是盛夏,而且观察不到北半球的部份。不过,从21世纪开始之际,北半球的"衣领"和极区就可以被哈勃太空望远镜和凯克望远镜观测到。结果,天王星看起来是不对称的:靠近南极是明亮的,从南半球的"衣领"以北都是一样的黑暗。稍后可能出现在天王星上的季节变化,将会被详细的讨论。天王星可以观察到的纬度结构和木星与土星是不同的,他们展现出许多条狭窄但sè彩丰富的带状结构。

    除了大规模的带状结构,旅行者2号观察到了10朵小块的亮云,多数都躺在"衣领"的北方数度。在1986年看到的天王星,在其他的区域都像是毫无生气的死寂行星。但是,在1990年代的观测,亮云彩特征的数量有着明显的增长,他们多数都出现在北半球开始成为可以看见的区域。一般的解释认为是明亮的云彩在行星黑暗的部份比较容易被分辨出来,而在南半球则被明亮的"衣领"掩盖掉了。然而,两个半球的云彩是有区别的,北半球的云彩较小、较尖锐和较明亮。他们看上去都躺在较高的高度,直到2004年南极区使用观测之前这些都是事实。这是对甲烷吸收带敏感的波段,而北半球的云彩都是用这种光谱的波段来观测的。云彩的生命期有这极大的差异,一些小的只有4小时,而南半球至少有一个从旅行者2号飞掠过后仍一直存在着。最近的观察也发现,虽然天王星的气候较为平静,但天王星的云彩有许多特xìng与海王星相同。但有一种特殊的影像,在海王星上很普通的大暗斑,在2006年之前从未在天王星上观测到。

    天王星内核图

    追踪这些有特征的云彩,可以测量出天王星对流层上方的风是如何在极区咆哮。在赤道的风是退行的,意味着他们吹的方向与自转的方向相反,他们的速度从8722;100至8722;50米/杪。风速随着远离赤道的距离而增加,大约在纬度±20°静止不动,这儿也是对流层温度最低之处。再往极区移动,风向也转成与行星自转的方向一致,风速则持续增加,在纬度±60°处达到最大值,然后下降至极区减弱为0。在纬度8722;40°附近,风速从150到200米/杪,因为"衣领"盖过了所有平行的云彩,无法测量从哪儿到南极之间的风速。与北半球对照,风速在纬度+50°达到最大值,速度高达240米/杪。这些速度会导致错误的认定北半球的风速比较快,事实上,在天王星北半球的风速是随着纬度一度一度的在缓缓递减,特别是在中纬度的±20°至±40°的纬度上。目前还无法认定从1986年迄今,天王星的风速是否发生了改变,而且对较慢的子午圈风依然是一无所知

    季节变化

    在2004年秋天的短暂时期,天王星上出现了与海王星相似的一大片云块,观察到229米/秒(824公里/时)的破表风速,和被称为"7月4rì烟火"的大风暴。在2006年8月23rì,太空科学学院的研究员(Boulder,CO)和威斯康辛大学观察到天王星表面有一个大黑斑,让天文学家对天王星大气层的活动有更多的了解。虽然还不是完全了解为什么会突然发生活动的高cháo,但是它呈现了天王星极度倾斜的自转轴所带来的季节xìng的气候变化。要确认这种季节变化的本质是很困难的,因为对天王星大气层的观察数据仍少于84年,也就是一个完整的天王星年。虽然已经有了一定数量的发现,光度学的观测已经累积了半个天王星年(从1950年代起算),在两个光谱带上的光度变化已经呈现了规律xìng的变化,最大值出现在至点,最小值出现在昼夜平分点。从1960年开始的微波观测,深入对流层的内部,也得到相似的周期变化,最大值也在至点。从1970年代开始对平流层进行的温度测量也显示最大值出现在1986年的至rì附近。多数的变化相信与可观察到的几何变化相关,天王星是一个扁圆球体,造成从地理上的极点方向可以看见的区域变得较大,这可以解释在至rì的时候亮度较亮的原因。天王星的反照率在子午圈的附近也比较强(见上述)。例如,天王星南半球的极区比赤道的带明亮。另一方面,微波的光谱观测显示,也证明两极地区比较明亮,同时也知道平流层在极区的温度比赤道低。所以,季节xìng的变化可能是这样发生的:极区,在可见光和微波的光谱下都是明亮的,而在至点接近时看起来更加明亮;黑暗的赤道区,主要是在昼夜平分点附近的时期,看起来更为黑暗。另外,在至点的掩星观测,得到赤道的平流层温度较高。有相同的理由相天王星信物理xìng的季节变化也在发生。当南极区域变得明亮时,北极相对的呈现黑暗,这与上述概要xìng的季节变化模型是不符合的。在1944年抵达北半球的至点之前,天王星出现升高的亮度,显示北极不是永远黑暗的。这个现象暗示可以看见的极区在至rì之前开始变亮,并且在昼夜平分点之后开始变暗。详细的分析可见光和微波的资料,显示亮度的变化周期在至点的附近不是完全的对称,这也显示出在子午圈上反照率变化的模式。另外,一些微波的数据也显示在1986年至rì之后,极区和赤道的对比增强了。最后,在1990年代,在天王星离开至点的时期,哈柏太空望远镜和地基的望远镜显示南极冠出现可以察觉的变暗(南半球的"衣领"除外,他依然明亮),同时,北半球的活动也证实是增强了,例如云彩的形成和更强的风,支持期望的亮度增加应该很快就会开始。异常的极和南半球8722;45°明亮的"衣领",被期望在行星的北半球出现。

    物理变化的机制还不是很清楚,在接近夏天和冬天的至点,天王星的一个半球沐浴在阳光之下,另一个半球则对向幽暗的深空。照亮半球的阳光,被认为会造成对流层局部的增厚,结果是形成数层的甲烷云和yīn霾。在纬度8722;45°的明亮"衣领"也与甲烷云有所关联。在南半球极区的其他变化,也可以用低层云的变化来解释。来自天王星微波发shè谱线上的变化,或许是在对流层深处的循环变化造成的,因为厚实的极区云彩和yīn霾可能会阻碍对流。现在,天王星天和秋天的昼夜平分点即将来临,动力学上的改变和对流可能会再发生。

    [编辑本段]

    形成

    有些论点认为气体巨星和冰巨星在形成的时候就有差异存在,太阳系的诞生应该开始于一个气体和尘土构成的巨大转动的球体,也就是前太阳星云。当他凝聚时,他逐渐形成盘状,在中心的崩塌形成了太阳。多数的星云气体,主要是氢和氦,形成了太阳;同时,颗粒的尘土集合形成了第一颗原行星。在行星成长的过程中,有些累积到足够的质量,能够凝聚星云中残余的气体。聚集越多的气体,使他们变得越大;他们变得越大,就越能聚集气体,直到达到一个关键的点,使他们开始以指数的增长。冰巨星,气体只有几个地球的质量,未能达到这个临界点。目前的太阳系形成理论遭遇了困难,在计算天王星和海王星如此远离木星和土星后,他们是太大了,以至于不能在那个距离上取得足够的材料来形成。相反的,有些科学家认为是在离太阳较近的位置形成之后,才被木星驱赶到外面的。然而,最近的摹拟,将行星漂移计算在内,似乎已能在他们现存的位置上形成天王星和海王星。

    [编辑本段]

    卫星

    天王星主要卫星的比较

    目前已知天王星有27颗天然的卫星,这些卫星的名称都出自莎士比亚和蒲伯的歌剧中。五颗主要卫星的名称是米兰达、艾瑞尔、乌姆柏里厄尔、泰坦尼亚和欧贝隆。第一颗和第二颗(泰坦尼亚和欧贝隆)是威廉8226;赫歇耳在1787年3月13rì发现的,另外两颗艾瑞尔和乌姆柏里厄尔是在1851年被威廉8226;拉索尔发现的。在1852年,威廉8226;赫歇耳的儿子约翰8226;赫歇耳才为这四颗卫星命名。到了1948年杰勒德P.库普尔发现第五颗卫星米兰达。

    天王星卫星系统的质量是气体巨星中最少的,的确,五颗主要卫星的总质量还不到崔顿的一半。最大的卫星,泰坦尼亚,半径788.9公里,还不到月球的一半,但是比土星第二大的卫星Rhea稍大些。这些卫星的反照率相对也较低,乌姆柏里厄尔约为0.2,艾瑞尔约为在绿光)。这些卫星由冰和岩石组成,大约是50%的冰和50%的岩石,冰也许包含氨和二氧化碳。

    在这些卫星中,艾瑞尔有着最年轻的表面,上面只有少许的陨石坑;乌姆柏里厄尔看起来是最老的。米兰达拥有深达20公里的断层峡谷,梯田状的层次和混乱的变化,形成令人混淆的表面年龄和特征。有种假说认为米兰达在过去可能遭遇过巨型的撞击而被完全的分解,然后又偶然的重组起来。

    1986年1月,旅行者2号太空船飞越过天王星,在稍后研究照片时,发现了Perdita和10颗小卫星。后来使用地面的望远镜也证实了这些卫星的存在。

    天卫一(Ariel)是环绕天王星运行的一颗卫星。

    天卫二(Umbriel英语发单"UMbreeel")是天王星第三大卫星,已知卫星中距天王星第十三近它由Williassell于1851年发现.天卫二和天卫四很相似,但后者要比它大35%。天王星的大卫星都是由占40~50%的冰和岩石混合而成,它所含的岩石比土卫五之类所含的要多一些。天卫二的剧烈起伏的火山口地形可能从它形成以来就一直稳定存在。天卫二非常暗,它反shè的光大约是天王星最亮的卫星--天卫一的一半.它的表面布满陨石坑。尽管没有地质活动的迹象,却有着离奇的特征。它有一个明亮的陨石坑,宽约112公里,绰号"萤光杯"。坑表面深sè部分可能是有机物质,浅sè部分则无人知道是什么。

    天卫三(Titania)是环绕天王星运行的一颗卫星。天卫三跟天卫四差不多大小,也复满了火山灰。这表明曾发生过火山活动。那儿有长达数千公里的风力强劲的大峡谷,可能是由于内部的水冻结、膨胀,撑裂了薄弱的外壳而形成的。天卫三直径约为1000公里,是天王星最大的卫星。它的表面也被一种黑sè物质重新复盖过,可能是甲烷或水冰。

    天卫四(Oberon)是环绕天王星运行的一颗卫星。最外层的天卫四布满了陨石坑。陨石坑底有许多暗区,可能已经填满冰岩。

    天卫五(Miranda)是环绕天王星运行的一颗卫星。。

    天卫六是环绕天王星运行的一颗卫星。

    天卫七是环绕天王星运行的一颗卫星。

    天卫八是环绕天王星运行的一颗卫星

    天卫九是环绕天王星运行的一颗卫星。

    天卫十是天王星的一颗小的天然卫星。

    天卫十一是环绕天王星运行的一颗卫星。

    天卫十二是环绕天王星运行的一颗卫星。

    天卫十三是环绕天王星运行的一颗卫星。

    天卫十四是环绕天王星运行的一颗卫星。

    天卫十五是环绕天王星运行的一颗卫星。

    天卫十六是环绕天王星运行的一颗卫星。

    天卫十七是环绕天王星运行的一颗卫星。

    天卫十八是环绕天王星运行的一颗卫星。

    天卫十九是环绕天王星运行的一颗卫星。

    天卫二十是环绕天王星运行的一颗卫星。

    天卫二十一是环绕天王星运行的一颗卫星。;
章节错误,点此报送(免注册), 报送后维护人员会在两分钟内校正章节内容,请耐心等待。